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Abstract. Two-photon transitions in the hydrogen atom are analytically evaluated within the nonrela-
tivistic limit utilizing the Coulomb Green function method. The two-photon emission probability for the
transition process 2s → 2γ(E1) + 1s serves as a test for the other calculations and was compared with the
results of previous analytical and numerical calculations. The two-photon emission probabilities for the
processes 2p → γ(E1) + γ(M1) + 1s and 2p → γ(E1) + γ(E2) + 1s are also evaluated and compared with
previous numerical calculations. Different nonrelativistic “forms” for the decay probabilities in combination
with different gauge choices are considered.

PACS. 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules – 12.20.Ds Spe-
cific calculations – 31.15.-p Calculations and mathematical techniques in atomic and molecular physics
(excluding electron correlation calculations)

1 Introduction

The probabilities for the spontaneous two-photon decay
in hydrogen atoms and hydrogenlike ions are under in-
vestigation since the theoretical formalism has been in-
troduced by Göppert-Mayer [1] and a first estimate for
the two-photon E1E1 transition 2s → 2γ(E1) + 1s has
been presented by Breit and Teller [2]. A highly accu-
rate calculation of the E1E1-transition probability has
been performed by Klarsfeld [3]. Relativistic corrections
to his result have been obtained by Drake and Goldman
[4] and by Parpia and Johnson [5], while the recoil cor-
rections have been provided in the papers by Fried and
Martin [6] and by Bacher [7]. An accurate fully relativis-
tic calculation of 2s–1s transition in H-like ions with the
partial inclusion of QED corrections, as well as nuclear
size and polarization corrections was performed in [8].
Karshenboim and Ivanov [9–11] evaluated the leading
logarithmic contribution to radiative corrections to this
decay. Recently Jentschura [12] performed a complete
evaluation of these radiative corrections. The two-photon
decay probabilities for processes ns → 2γ(E1) + 1s with
n = 3–6 in hydrogen have been calculated in [13]. The
present paper follows these calculations and is devoted to
the evaluation of the probabilities for two-photon decays
2p→ γ(E1) + γ(M1) + 1s and 2p→ γ(E1) + γ(E2) + 1s,
respectively. Evaluations of the two latter transitions have
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been first accomplished in references [14,15] for hydrogen-
like systems with nuclear charge numbers Z within the
range 1 ≤ Z ≤ 100 by pure numerical methods. Here we
present analytic calculations in the nonrelativistic limit
and compare them with corresponding numerical results.
For performing the summations over intermediate states
(i.e. over the complete set of solutions of the Schrödinger
equation describing electrons in the Coulomb field of the
nucleus) we employ the Coulomb Green function [16]. The
Green function method has been first applied for deriving
the general expression for the two-photon decay probabil-
ity in H atom and H-like ions in references [17,18]. An
alternative approach applicable for arbitrary states based
on Schwinger’s analytical representation of the Coulomb
Green function has been presented in [19,20].

One motivation for calculating the E1M1 two-photon
decay is provided by the fact that in He-like ions this decay
channel dominates in the absence of hyperfine-quenching
effects as it has been first stated in reference [21]. Ac-
cordingly, the selection rules resulting from the angular-
momentum coupling for 0 → 0 transitions allow for the
emission of two photons with equal angular momenta only.
The probability for the two-photon E1M1-decay process
23P0 → γ(E1)+γ(M1)+11S0 has been evaluated within a
fully relativistic approach for Z = 92 in [22], for 50 < Z <
94 in [23] and for 30 < Z < 100 in [24]. As it has been in-
dicated in [22], the nonrelativistic behavior of E1M1 tran-
sitions as a function of Z with the neglect of the interelec-
tron interaction should be WE1M1 ∼ (8/9π)(αZ)12/100.
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This implies that the same order of magnitude can be
expected for the E1M1-decay probability for the process
2p1/2 → γ(E1) + γ(M1) + 1s in H-like ions.

According to [22], this very small value arises due to
the cancellation of contributions of the leading terms 2p1/2

and 2p3/2 in the summation over intermediate np-states.
However, we should note that this result yields only a
minor contribution to the total two-photon E1M1 2p–1s
decay rate for small nuclear charges Z when it is evalu-
ated within the “velocity” gauge [22]. In this case a major
contribution arises from the negative-energy intermediate
states and scales like ∼ (αZ)8 [14,15].

For the 2p1/2 → 1s transition in hydrogen and
hydrogen-like ions Schmieder’s rule [19] does not apply
and the two-photon transition 2p1/2 → γ(E1)+γ(E2)+1s
is allowed. As to our knowledge this transition probability
has been evaluated for the first time in references [13,14].
It turned out that the major contribution is proportional
to (αZ)8. Thus the two-photon E1M1 and E1E2 decay
rates for 2p–1s transitions represent higher-order correc-
tions to the life time of the 2p1/2-level when compared to
the lowest-order (αZ)3 log(αZ) radiative corrections de-
rived in references [21,22]. A direct observation of the in-
fluence of these corrections in the H atom does not look
feasible due to the huge background arising from the one-
photon transition 2p→ γ(E1)+ 1s. However, two-photon
decays of the 2p-level could be observed in coincidence
experiments.

In references [25,26] the parity-violation effect in the
H atom has been described. Accordingly, the two-photon
E1M1 transition 1s+2γ → 2p1/2 plays the role of the basic
transition while the parity-violating E1E1-transition be-
comes admixed by the parity-nonconserving (PNC) elec-
troweak interaction. It was assumed that a coincidence ex-
periment should be performed in oder to avoid the huge
background from the one-photon process 1s+ γ → 2p1/2.
Recent experimental and theoretical investigations of the
PNC effects in neutral atoms indicate a possible disagree-
ment with the predictions of the Standard Model [27]. At
the earlier stage of the theoretical calculations of this effect
the radiative corrections were fully disregarded and the
agreement with the Standard Model predictions seemed
to exist. However, as it was found in the work by Johnson,
Bednyakov and Soff [28], the vacuum polarization correc-
tion violates this agreement. This result triggered a series
of works (see [27]) where the electron self-energy correc-
tion was evaluated within different approximations. This
correction compensated the vacuum polarization contribu-
tion. The most accurate result for the self-energy was re-
cently obtained in [29]. Still, there is a number of radiative
corrections to the PNC effects which are formally of the
same order as the calculated corrections [30,31]. Before
all these corrections are included, it is too early to make a
conclusive statement about the agreement of the Cs exper-
iments with the Standard Model predictions. The evalua-
tion of radiative corrections to the PNC effects in neutral
many-electron atoms presents a rather delicate problem.
Therefore, experiments with simpler systems such as H-
like ions are highly desirable. Our calculations of E1M1

and E1E2 transitions can be used directly for the eval-
uation of the “degree” of the PNC effect in experiments,
similar to [25,26]. The knowledge of E1M1 and E1E2 tran-
sition rates in the hydrogen atom is also necessary for
providing a more accurate estimate of the nonresonant
correction to the two-photon resonance 1s–2s [32].

In this paper at first we repeated the calculation of
the E1E1 decay of the 2s-state in hydrogen. The result
obtained is in satisfactory agreement with that of previ-
ous calculations and serves as a control for the further
E1E2, E1M1 calculations and serves as control for the
further E1E2, E1M1 calculations. The other parts of this
paper are devoted to explore analytical evaluation meth-
ods of E1M1 and E1E2 contributions to the two-photon
emission processes 2p1/2 → 2γ + 1s. The calculations are
performed within different gauges and employing differ-
ent forms for the expression of the transition probability
that can be derived in the nonrelativistic limit (see [33]).
Atomic units (a.u.) are used throughout the paper.

2 Transition probabilities in different forms
and gauges

The transition probability for the emission of a photon
with definite angular momentum and parity can be de-
scribed in first-order of QED-perturbation theory within
arbitrary gauges as

WA→A′(ω) =
∑

kq

[∣∣∣〈A′|
(
�α · e

�Aωkq(�r)
)

+ Φωkq (�r) |A〉
∣∣∣
2

+
∣∣∣〈A′|�α · m

�Aωkq (�r) |A〉
∣∣∣
2
]
, (1)

where e
�Aωkq and m

�Aωkq denote the spherical components
of the transverse electric and transverse magnetic vector
potential and Φωkq those of the scalar potential. The bra-
kets |A〉 and 〈A′| are stationary Dirac states (wave func-
tions) with energies EA and EA′ , and �α is the vector of
the Dirac matrices. In the momentum representation these
potentials take the form

e
�Aωkq(�æ) =

4π2c3/2

ω3/2

(
δ
(
|�æ| − ω

c

)
e
�Ykq +K�nY (k)

q

)
,

(2)

m
�Aωkq (�æ) =

4π2c3/2

ω3/2
δ
(
|�æ| − ω

c

)
m
�Ykq , (3)

Φωkq (|�æ|) =
4π2c3/2

ω3/2
δ
(
|�æ| − ω

c

)
KY (k)

q . (4)

Here �æ denotes the photon momentum (with direction
�n = �æ/|æ|), which is related to the frequency ω = EA −
EA′ of the emitted photon via |�æ| = ω/c. e

�Ykq and m
�Ykq

denote the vector spherical harmonics of electric and mag-
netic type, respectively, Y (k)

q is an ordinary spherical har-
monic, c is the speed of light, K is the gauge constant and
finally kq denote the angular momentum and projections
of the photon, respectively.
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The spherical components of the transversal electric
eA

(1λ) and the longitudinal lA
(1λ) parts of the electro-

magnetic vector potential (the superscript (1λ) denotes
the rank of a spherical tensor and labels the components)
are

eA
(1λ)
ωkq =

√
ω

πc(2k + 1)

[
√
k(2k + 3)

(
1 k + 1 k

λ q − λ q

)
gk+1(ωr)C

(k+1)
−q+λ

+
√

(k + 1)(2k − 1)

(
1 k − 1 k

λ q − λ q

)
gk−1(ωr)C

(k−1)
−q+λ

]

× i−k−1(−1)k+q−λ, (5)

lA
(1λ)
ωkq =

√
ω

πc(2k + 1)

[
√

(k + 1)(2k + 3)

(
1 k + 1 k

λ q − λ q

)

×gk+1(ωr)C
(k+1)
−q+λ

+
√
k(2k − 1)

(
1 k − 1 k

λ q − λ q

)
gk−1(ωr)C

(k−1)
−q+λ

]

× i−k−1(−1)k+q+λ+1, (6)

where C(k)
−q =

√
4π/(2k + 1)Y (k)

−q and usual notations for
3j-symbols are employed. The spherical components of the
transverse magnetic vector potential read

mA
(1λ)
ωqk = (−1)λ+k+qi−k

√
ω(2k + 1)

πc
gk (ωr)

×
(

1 k k

−λ −q + λ −q

)
C

(k)
−q+λ, (7)

while the spherical components of the scalar potential are
given by

Φωkq = i−k(−1)k+q2
√
ω

c
gk(ωr)Y (k)

−q . (8)

The radial functions gk(ωr) are related to Bessel functions
Jµ via gk(z) = (2π)3/2(1/

√
z)Jk+ 1

2
(z).

Usually two gauges are frequently used: the so-called
Coulomb gauge is characterized by the choice for the
gauge parameter K = 0 and by vanishing longitudi-
nal part of the vector potential and scalar potential (i.e.
�∇ · �A = �∇ · e

�A = 0 and Φ = 0), respectively. An-
other convenient choice is characterized by the parameter
K = −√

(k + 1)/k. Within this gauge, as it can be seen
from equations (5) and (6), the terms containing spherical
functions C(k)

−q of the order k− 1, vanish in the expression
for the transition probability (1).

After some manipulations the expression for the emis-
sion probability of an electric photon with the angular

momentum k can be cast into the form [27]

WEk
A→A′ =

2(k + 1)ω
k(2k + 1)c

×
k∑

q=−k

∣∣∣∣∣〈A
′|

[

eO
′(k)
−q +K

√
k

k + 1

(
lO

(k)
−q + ΦO

(k)
−q

)]
|A〉

∣∣∣∣∣

2

(9)

Here

eO
′(k)
−q = −i

[
k

√
2k + 3
k + 1

gk+1(ωr)
[
C(k+1) × α(1)

](k)

−q

+
√
k(2k − 1)gk−1(ωr)

[
C(k−1) × α(1)

](k)

−q

]
,

(10)

lO
(k)
−q = i

[√
(k + 1)(2k + 3)gk+1(ωr)

[
C(k+1) × α(1)

](k)

−q

−
√
k(2k − 1)gk−1(ωr)

[
C(k−1) × α(1)

](k)

−q

]
,

(11)

ΦO
(k)
−q =

√
2k + 1gk(ωr)C(k)

−q (12)

and [a(s1) × b(s2)](s)q represents the tensor product of two
irreducible tensors of rang s1 and s2 coupled to a tensor
of rang s with components q.

Using the following integral relation for the Dirac wave
functions [34]

i

∫
ψ∗

A′

(
�α · �∇χ

)
ψA d

3τ =
ω

c

∫
ψ∗

A′χψA d
3τ, (13)

where χ is an arbitrary function, one can establish another
form for the Ek-transition probability (see [33])

WEk
A→A′ =

2(k + 1)ω3

k(2k + 1)c3

k∑

q=−k

∣∣∣〈A′|eO(k)
−q

+K
c

ω

√
k

k + 1

[
lO

(k)
−q + ΦO

(k)
−q

]
|A〉

∣∣∣∣∣

2

, (14)

where

eO
(k)
−q = −rgk(ωr)C(k)

−q

− i
r

k + 1
gk(ωr)

[√
k(2k − 1)

[
C(k−1) × α(1)

](k)

−q

+
√

(k + 1)(2k + 3)
[
C(k−1) × α(1)

](k)

−q

]
. (15)

Thus, we have two different (equivalent) forms for the Ek-
transition probabilities (Eqs. (9) and (14)) together with
an arbitrary choice for the gauge constant K at our dis-
posal. Analogous expressions for the emission probability
of photons, characterized by energy and polarization, are
provided in [35].

The aim of the present investigation concerns the
derivation of the nonrelativistic limit of the E1M1-,
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E1E1- and E1E2-transition probabilities in different
gauges and forms. Deriving the nonrelativistic limit of
equations (9) and (14), implies two distinct nonrelativis-
tic forms for the one-photon transition probability with
arbitrary gauge constant K (see [36]):

WEk
A→A′ =

2(k + 1)(2k + 1)ω2k−1

k[(2k + 1)!!]2c2k+1

×
k∑

q=−k

∣∣∣∣∣(A
′|

(
Q

′(k)
−q +K

√
k

k + 1

[
Q

′(k)
−q − ωQ

(k)
−q

])
|A)

∣∣∣∣∣

2

,

(16)

and

WEk
A→A′ =

2(k + 1)(2k + 1)
k[(2k + 1)!!]2

k∑

q=−k

(ω
c

)2k+1

×
∣∣∣∣∣(A

′|
(
Q

(k)
−q +K

√
k

k + 1

[
1
ω
Q

′(k)
−q −Q

(k)
−q

])
|A)

∣∣∣∣∣

2

.

(17)

Here |A) and (A′| are now nonrelativistic Schrödinger
states (wave functions) together with operators

Q
(k)
−q = −rkC

(k)
−q , (18)

Q
′(k)
−q =−r−k−1

(
kC

(k)
−q

∂

∂r
+
i

r

√
k(k+1)

[
C(k) × L(1)

](k)

−q

)
,

(19)

where L(1) is the orbital angular momentum of the atomic
electron. Choosing K = 0, we find that the operator
in equation (16) corresponds to the nonrelativistic tran-
sition operator in the “velocity” form, while for K =
−√

(k + 1)/k it is related to the transition operator in the
“length” form. However, the correspondence of a certain
gauge choice to a particular type of nonrelativistic transi-
tion operators is not unique. In view of equation (17) we
can conclude, that within the nonrelativistic limit the ex-
pression (14) with K = 0 converts the transition operator
into the “length” form and with K = −√

(k + 1)/k into
the “velocity” form, respectively.

3 Application of the Coulomb Green function

In order to calculate the transition probabilities for the
processes 2p → 2γ + 1s and 2s → 2γ + 1s in the hydro-
gen atom we employed the nonrelativistic Coulomb Green
function. The summations over the entire spectrum of the
Schrödinger equation arise usually when perturbation the-
ory is applied. The Green function approach allows us
to express intermediate summations in a closed analytic
form. This is very useful for the analysis and for tests of
numerical evaluations.

The Green function of the Schrödinger equation is rep-
resented by the solution of the equation

(
Ĥ − E

)
G(E;�r, �r ′) = δ(�r − �r ′) (20)

and can be always represented as a spectral decomposition

G(E;�r, �r ′) =
∑

N

ϕ∗
N (�r)ϕN (�r ′)
EN − E

, (21)

where the sum runs over the entire spectrum of the
Schrödinger Hamiltonian (bound and continuous spec-
trum). The set of quantum numbers N may be specified as
usual by the principal quantum number n, orbital-angular
momentum number l and projections m. In view of the
spherical symmetry it is sufficient to derive a closed ex-
pression for radial part gl(E; r, r′) of the Green function,
defined by the partial wave decomposition

G(E;�r, �r ′) =
∑

lm

1
rr′

gl(E; r; r′)Y ∗
lm(Ω)Ylm(Ω′). (22)

In the particular case of a Coulomb potential the Green
function of equation (20) is called Coulomb Green Func-
tion (CGF). With the use of the expansion (22) the ra-
dial integrals occurring in equations (16) and (17) for the
transition probabilities can be calculated explicitly (see
Ref. [37] for details).

For the radial part of the Coulomb Green function it is
convenient to employ the Sturmian expansion [38], which
is defined in the entire complex energy plane via

1
rr′

gl(E; r, r′) =
∞∑

nr=0

Φnrl(r)Φnr l(r′)
Enrl − E

, (23)

where Φnrl(r) denote the Sturmian functions. The Stur-
mian expansion of the CGF can be represented in an al-
ternative form by introducing radial functions

Rnrl

(
2r
ν

)
=

1
r

√
Z

νnr

1
(2l+ 1)!

×
√
Γ (nr + l + 1)
Γ (nr − l)

Mnr ,l+ 1
2

(
2r
ν

)
, (24)

which are related to Whittaker functions Mnr,l+ 1
2

(2r/ν),
where ν = Z/

√−2E. For integer values ν = n these func-
tions coincide with the normalized, radial hydrogenic wave
functions

Φnrl(r) =
√
νn

Z
Rnl

(
2r
ν

)
. (25)

Substitution of equation (25) into (23) yields

1
rr′

gl(ν; r, r′) =
ν2

Z2

∞∑

n=l+1

n

n− ν
Rnl

(
2r
ν

)
Rnl

(
2r′

ν

)
.

(26)
Within this paper we apply the Green function method
for the evaluation of the two-photon decay probability in
the hydrogen atom.

In [33] the two-photon transition process 2s→ γ(E1)+
γ(E1)+1s has been considered. The probability for a two-
photon decay A → γ(E1) + γ(E1) + A′ with photon fre-
quencies ω1 and ω2 within the nonrelativistic limit and
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dipole approximation yields

dWE1E1
A→A′(ω2) =

8
9π

(
4π
3

)3

×
∑

M1M2

∣∣∣∣(A
′|rY1M2

(
�r

r

)
G(EA − ω1;�r, �r ′)r′Y ∗

1M1

(
�r ′

r′

)
|A)

+ (A′|rY1M1

(
�r

r

)
G(EA − ω2;�r, �r ′)r′Y ∗

1M2

(
�r′

r′

)
|A)

∣∣∣∣∣

2

× (ω1ω2)2 dω2. (27)

The energy conservation law implies ω1 = EA − EA′ −
ω2. After the evaluation of angular matrix elements in
equation (27) the remaining radial integrals have the form

∞∫

0

∞∫

0

∞∫

0

dr′drdx (r′)s′+ 7
2 (r)s+ 7

2

× exp
(
−1
ν
(β′r′ + βr) + (r + r′) cosh(x)

)

×
(
coth

(x
2

))2ν

I2l+1

(
2
√
rr′

ν
sinh(x)

)
, (28)

where n and n′ are the principal quantum numbers of the
initial and final states, respectively together with the pa-
rameters β = ν/n, β′ = ν/n′ and ν =

√−2 (Enl − ω).
These integrals can be evaluated analytically when insert-
ing the series expansion for the modified Bessel functions
I2l+1. The integration over x should be evaluated in the
end. Assuming emission of two identical E1 photons, one
can write the total probability for such a two-photon de-
cay as

W 2E1
A→A′ =

1
2

ω0∫

0

dW 2E1
A→A′ (ω) (29)

with ω0 = EA − EA′ . For the process 2s → 2γ(E1) + 1s
the result of the evaluations in [39] was reported as

W 2E1
2s→1s = 8.226(αZ)6 s−1 (30)

with an accuracy of about 1%.

In our calculation of the E1E1-transition probability
we shall employ an alternative expression for the radial
part of the CGF based on the Sturmian expansion (26).

4 E1E1 two-photon decay

In order to provide confidence in applications of the CGF
expansions we consider at first the two-photon decay pro-
cess 2s→ γ(E1)+γ(E1)+1s in the hydrogen atom. As a
test of the method the gauge constant K = −√

(k + 1)/k
is chosen in the expression equation (16) for the transi-
tion probability, which corresponds to the nonrelativis-
tic “length” form as mentioned above. (This would be
equivalent to the choice K = 0 together with the form
Eq. (17).) Inspection of equations (16) and (18) reveals
that the emission of electric photons (Ek) is described by
the potentials

V Ek =
2(k + 1)ωk+ 1

2

k(2k + 1)!!
rkY

(k)
−q . (31)

Accordingly, the two electric photon decay rate of the
atomic state A can be written as

dWEkEk′
A→A′ =

∑

qq′mAmA′

∣∣∣∣∣
∑

N

(A′|V Ek|N)(N |V Ek′ |A)
EN − EA + ω

+
∑

N

(A′|V Ek′ |N)(N |V Ek|A)
EN − EA + ω

∣∣∣∣∣

2

× δ (ω + ω′ − EA + EA′) dωdω′ (32)

Here the labels A,A′ and N abbreviate the set of non-
relativistic quantum numbers (principal quantum number
n, orbital momentum l and projection ml) for character-
izing the atomic electron in the initial (A), intermediate
(N) and final (A′) states. The photons will be character-
ized by the angular momentum and projections (kq) as
well as by the type of the photon (electric or magnetic).
Equation (32) also implies the summation over degenerate
substates of the final atomic state A′ and the average over
the degenerate substates of the initial atomic state A as
well as summations over the angular momentum projec-
tions of both emitted photons. The frequencies of the two
photons ω and ω′ are related by the energy conservation
law ω′ = ω0 − ω, where ω0 = EA − EA′ .

Employing the eigenmode decomposition of the
Coulomb Green function (Eqs. (22–26)) the probability
of the two-photon decay process takes the form

dW E1E1
A→A′ =

2π

2lA + 1

∑

qq′mAmA′

∣∣∣∣∣∣

∑

lml

∫ ∫
d3r1d

3r2 RnA′ lA′ (r1)Y
∗
lA′mA′

(
�r1

r1

)
V E1(�r1)gl(ν; r1, r2)

× Ylml

(
�r1

r1

)
Y ∗

lml

(
�r2

r2

)
V E1(�r2)RnAlA(r2)YlAmA

(
�r2

r2

)

+
∑

lml

∫ ∫
d3r1d

3r2 RnA′ lA′ (r1)Y
∗

lA′mA′

(
�r1

r1

)
V E1(�r1)gl(ν

′; r1, r2)Ylml

(
�r1

r1

)
Y ∗

lml

(
�r2

r2

)
V E1(�r2)RnAlA(r2)YlAmA

(
�r2

r2

)∣∣∣∣∣∣

2

dω,

(33)
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where V Ek(�r) is the potential (31) specified within
the gauge K = −√

(k + 1)/k and compatible
with the form (16), together with parameters ν =
Z/

√−2(EA − ω), ν′ = Z/
√−2(EA − ω′) and frequencies

ω′ = EA − EA′ − ω. For the case of hydrogen one sets
Z = 1.

Inserting the expression (31) for the potentials V Ek

and evaluating at first the angular matrix elements in
equation (33) (integrating over angles and summing over
all projections) yields for quantum numbers A = 2s,
A′ = 1s, k = k′ = 1 (the values for k and k′ follow via
selection rules for given initial and final atomic states)

dW 2E1
2s→1s(ω) =

(
2
3

)3
ω3ω′3

π
[I1(ν) + I1(ν′)]

2
α6dω (34)

together with a radial integrals I1 of the type

I1(ν) =
1√
2

∞∫

0

∞∫

0

dr1dr2e
−r1− r2

2 r31r
3
2(2 − r2)g1(ν; r1, r2),

(35)
and

I1(ν′) =
1√
2

∞∫

0

∞∫

0

dr1dr2e
−r1− r2

2 r31r
3
2(2 − r2)g1(ν′; r1, r2),

(36)
respectively. The further calculations utilize the represen-
tation of the radial Coulomb Green function in terms an
expansion over Laguerre polynomials [32] (employed also
in Ref. [34])

gl(ν; r, r′) =
4Z
ν

(
4
ν2
rr′

)l

exp
(
−r + r′

ν

)

×
∞∑

n=0

n!L2l+1
n

(
2r
ν

)
L2l+1

n

(
2r′
ν

)

(2l+ 1 + n)!(n+ l + 1 − ν)
. (37)

The series (37) converges absolutely as n−3/2 for argu-
ments r, r′ > 0 and �(ν) = 0 [32]. The angular momen-
tum quantum number l = 1 for intermediate states is
determined by the angular integration. Inserting the ex-
pansion (37) for l = 1 into equation (35) (similarly for
Eq. (36)) yields

I1(ν) =
16

√
2

ν3

(ν
2

)10

×
∞∑

m=0

m!
(m+ 3)!(m+ 2 − ν)

∞∫

0

dξξ4e−ξ( ν+1
2 )L3

m(ξ)

×
∞∫

0

dtt4e−t(ν+2
4 )

(
1 − ν

4
t
)
L3

m(t). (38)

These integrals can be analytically evaluated

I1(ν) =
ν7213

√
2

(ν + 1)5(ν + 2)5

×
∞∑

m=0

(m+ 3)!
m!(m+ 2 − ν) 2F1

(
−m, 5; 4;

2
ν + 1

)

×
[
2F1

(
−m, 5; 4;

4
4+ν

)
− 5ν
ν + 2 2F1

(
−m, 6; 4;

4
2+ν

)]
,

(39)

where 2F1(a, b; c; z) is a hypergeometric function. Insert-
ing this result into equation (34) the integration over ω
has to be performed in order to obtain the total transi-
tion probability for the E1E1 decay of the 2s-state in the
hydrogen atom. This is numerically achieved with the aid
of the computer-algebra code MAPLE. The final result is

W 2E1
2s→1s =

1
2

ω0∫

0

dW 2E1
2s→1s(ω) = 0.0013187 (αZ)6 a.u.

= 8.234 s−1 (Z = 1) (40)

with ω0 = E2s−E1s. In equation (40) we indicated the Z-
dependence of the WE1E1

2s−1s transition probability. The nu-
merical value 8.234 s−1 coincides with earlier nonrelativis-
tic results. The relative deviation from the result 8.228 s−1

reported in [3] is about 0.07%.

5 E1E2 transition probability for the 2p state

In this section we consider the E1E2 decay of the 2p-state
in hydrogen the atom. We employ again the set of quan-
tum numbers nlm as far as the total angular momentum j
is not important in this calculation performed within the
nonrelativistic approach. Nevertheless, in order to com-
pare our results with those obtained from the relativistic
evaluation (see Refs. [14,15]), we shall perform the cal-
culation within two different gauges according to equa-
tions (16–19). This will also elucidate possible influence of
relativistic effects associated with the contribution of the
negative-energy Dirac spectrum.

Specifying again equation (33) for the transition be-
tween levels A = 2p, A′ = 1s and taking into account
that in this case the angular momenta of the photon can
take values k = 1, 2, we receive four different terms con-
tributing in equation (33). After angular integration and
summation over projections we derive

dWE1E2
2p→1s(ω) =

2ω3ω′3

3252π

× |ω′I1(ν) + ωI2(ν′) + ωI1(ν′) + ω′I2(ν)|2 dω, (41)

where

I1(ν) =
1√
6

∞∫

0

∞∫

0

dr1dr2 r
3
1r

5
2 e

−r1− r2
2 g1(ν; r1, r2) (42)
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and

I2(ν) =
1√
6

∞∫

0

∞∫

0

dr1dr2 r
4
1r

4
2 e

−r1− r2
2 g2(ν; r1, r2), (43)

respectively. Inserting again the representation (37) for
the CGF with l = 1 leads to radial integrals that can be
analytically evaluated

I1(ν) =
5
√

6ν9

(ν + 1)5(ν + 2)7

∞∑

m=0

(m+ 3)!
m!(m+ 2 − ν)

× 2F1

(
−m, 5; 4;

2
ν + 1

)
2F1

(
−m, 7; 4;

4
ν + 2

)
(44)

and

I2(ν) =
63/2212ν9

(ν + 1)7(ν + 2)7

∞∑

s=0

(s+ 5)!
s!(s+ 3 − ν)

× 2F1

(
−s, 7; 6;

2
ν + 1

)
2F1

(
−s, 7; 6;

4
ν + 2

)
. (45)

Substituting the integrals (44) and (45) (with correspond-
ing arguments ν and ν′) into (41) and integrating over
frequencies ω yields

WE1E2
2p→1s =

1
2

ω0∫

0

dWE1E2
2p→1s = 2.0075× 10−5 (αZ)8 a.u.

= 6.673× 10−6 s−1 (Z = 1) (46)

with ω0 = E2p − E1s. In equation (46) we indicated the
Z-dependence of the WE1E1

2p−1s transition probability. Com-
pared with the relativistic result in the “length” gauge
(see [10]) the relative discrepancy is about 1%.

The calculation of the E1E2 two-photon decay with the
nonrelativistic “velocity” form is more involved. Now the
gauge constant should be chosen either K = −√

(k + 1)/k
for the form equation (17) or K = 0 for the form equa-
tion (16).

We choose K = 0 together with the form equa-
tion (16). The potential reads in this case

V Ek(�r ) =
4ωk− 1

2

(2k + 1)!!

√
k + 1

k(2k + 1)
rk−1

×
[
kY

(k)
−q (Ω)

∂

∂r
+
i

r

√
k(k + 1)

[
Y (k) × L(1)

]k

−q

]
. (47)

The formula for dWE1E2
2p→1s follows again from equa-

tion (33). Performing angular integrations and summa-
tions over projections as discussed in previous cases now
yields

dWE1E2
2p→1s(ω) =

24

3352π
ω′ω

×
[
ω′2 |I1(ν) + I2(ν′)|2 + ω2 |I1(ν′) + I2(ν)|2

]
dω (48)

with radial integrals of the type

I1(ν) =
1√
6

∞∫

0

∞∫

0

dr1dr2 r
2
1r

3
2 e

−r1− r2
2

×
[
1 − 9i

2
− r2

2

] [
∂

∂r1
− 2i
r1

]
g1(ν; r1, r2), (49)

and

I2(ν) =
1√
6

∞∫

0

∞∫

0

dr1dr2 r
3
1r

2
2 e

−r1− r2
2

×
[
1 − 5i− r2

2

] [
∂

∂r1
− 3i
r1

]
g2(ν; r1, r2) (50)

together with parameters ν = Z/
√−2(E2p − ω) and ν′ =

Z/
√−2(E2p − ω′), respectively. The integrations over r1

and r2 lead to a rather lengthy analytical formula contain-
ing various combinations of expressions similar to those in
equations (44) and (45). The numerical evaluation yields
finally

WE1E2
2p→1s =

1
2

ω0∫

0

dWE1E2
2p→1s(ω) = 3.6896 × 10−6 (αZ)8a.u.

	 1.227 × 10−6 s−1 (Z = 1). (51)

where ω0 = 3/8 in a.u. This result differs from that
obtained from relativistic calculations [10,11] by about
0.5%. Note, that unlike as in the case of the “length”
form, the negative-energy contribution is no longer neg-
ligible when the “velocity” form is employed. Therefore,
the result (Eq. (51)) does not coincide with equation (46)
and represents only the positive-energy contribution to
WE1E2

2p−1s in the “velocity” form. Correspondingly, we com-
pare this result to the positive-energy contribution cal-
culated in [14,15]. The negative-energy contribution to
WE1E2

2p−1s in the “velocity” form for low Z values was eval-
uated analytically in [14].

6 E1M1 two-photon decay

For the mixed E1M1 two-photon transition probability the
expression (32) should be replaced by

dWE1M1
A→A′ =

∑

MeMmMAmA′

∣∣∣∣∣
∑

N

(A′|V E1(ω)|N)(N |V M1(ω′)|A)
EN − EA + ω

+
(A′|V M1(ω′)|N)(N |V E1(ω)|A)

EN − EA + ω′

+
(A′|V E1(ω′)|N)(N |V M1(ω)|A)

EN − EA + ω′

+
(A′|V M1(ω)|N)(N |V E1(ω′)|A)

EN − EA + ω

∣∣∣∣
2

dω. (52)
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Here V E1(ω) = (4/3)ω3/2rY
(1)
Me

, V M1(ω) =√
4/3µ0ω

3/2(ĵ1Mm +ŝ1Mm), µ0 = α/2 is Bohr’s magneton,
ĵ1Mm and ŝ1Mm are the spherical components of the total
angular-momentum and the spin operator (spherical
tensors of rank 1) of the electron. This choice corresponds
to the nonrelativistic “length” form for describing the
emission electric photons. Since the potential for the
magnetic photon includes total angular momentum and
spin operator, coupled wave functions with the set of
quantum numbers N = {nlsjm} should be used, i.e.,

φnlsjm =
∑

mlms

Cjm
lml sms

Rnl(r)Y (l)
ml

(Ω)ηsms , (53)

where Cjm
lml sms

is a Clebsch-Gordan coefficient, Rnl(r) is
the solution of the radial Schrödinger equation and ηsms

is the spin function. The magnetic potentials occurring
in equation (54) do not depend on radial variables. Thus,
only the intermediate state with nl = nAlA will contribute
in equation (52). After performing angular integrations
and summations over all projections one arrives at the
expressions

dWE1M1
2p→1s =

28µ2
0

π

(
2
3

)12

ωω′3dω (54)

and

WE1M1
2p→1s =

1
2

3/8∫

0

dWE1M1
2p→1s

=
25

π

(
2
3

)12

α8

3/8∫

0

ω

(
3
8
− ω

)3

dω. (55)

As the final result we obtain

WE1M1
2p→1s =

25

π

(
2
3

)12 243
655360

(αZ)8 a.u.

= 9.6769× 10−6 s−1 (Z = 1). (56)

Here we again indicated the Z-dependence of the WE1M1
2p−1s

transition probability. Comparison with the result of a
fully relativistic calculation reveals a discrepancy of about
0.1%.

7 Conclusions

The results of the analytic calculations presented in this
paper confirm the results of the purely numerical calcula-
tions of E1E2, E1M1 two-photon transitions in H atom
reported in references [14,15]. This support is especially
important since no other numerical calculations for these
transitions are available up to now. The evaluations are
performed by means of the CGF method. All angular and
radial integrations are analytically evaluated and only the
final integration over the photon frequency has to be per-
formed numerically. Looking at the pure dependence on

parameters the results reveal that in the nonrelativistic
limit the E1E2 and E1M1 transitions are by a factor
(αZ)2 smaller, than the one for E1E1 transition. Still the
additional numerical smallness provides two more orders
of magnitude.
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